
Efficient, Automatic Web Resource Harvesting

Michael L. Nelson, Joan A. Smith and
Ignacio Garcia del Campo

Old Dominion University
Computer Science Dept
Norfolk VA 23529 USA

{mln, jsmit, dgarcia}@cs.odu.edu

Herbert Van de Sompel
and Xiaoming Liu

Los Alamos National Laboratory
Research Library

Los Alamos NM 87545 USA

{herbertv, liu x}@lanl.gov

ABSTRACT
There are two problems associated with conventional web
crawling techniques: a crawler cannot know if all resources
at a non-trivial web site have been discovered and crawled
(“the counting problem”) and the human-readable format of
the resources are not always suitable for machine processing
(“the representation problem”). We introduce an approach
that solves these two problems by implementing support for
both the Open Archives Initiative Protocol for Metadata
Harvesting (OAI-PMH) and MPEG-21 Digital Item Dec-
laration Language (DIDL) into the web server itself. We
present the Apache module “mod oai”, which can be used
to address the counting problem by listing all valid URIs at a
web server and efficiently discovering updates and additions
on subsequent crawls. Our experiments indicated compa-
rable performance for initial crawls, and dramatic increases
in update speed mod oai can also be used to address the
representation problem by providing “preservation ready”
versions of web resources aggregated with their respective
forensic metadata in MPEG-21 DIDL format.

Categories and Subject Descriptors: H.3.5 Information
Storage and Retrieval: Online Information Services [Web-
based services]

General Terms: Performance, Design, Experimentation.

Keywords: Web Crawling, OAI-PMH, mod oai.

1. INTRODUCTION
Much of the web’s usability depends on the efficiency of

search engines and their crawlers. The indexable “surface”
web has grown from about 200 million pages in 1997 to over
11 billion pages in 2005 [17], and the “deep web” is estimated
to be 550 times larger [8]. Considerable attention has there-
fore been given to increasing the efficiency and scope of web
crawlers. A number of techniques to more accurately esti-
mate web page creation and updates [32, 13] and to improve
crawling strategies [14, 12] have been proposed. Techniques
such as probing search engines with keyword queries and
extracting the results are used to increase the scope of web

Copyright 2006 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an employee, contrac-
tor or affiliate of the U.S. Government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
WIDM’06, November 10, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-525-8/06/0011 . . .$5. 00.

crawls and obtain more of the deep web [20, 33, 35, 27, 11].
Extending the scope of a web crawl has implications on the
coverage of search engines and in web preservation [18, 28].

These approaches are necessary because web servers do
not have the capability to answer questions of the form
“what resources do you have?” and “what resources have
changed since 2004-12-27?” A number of approaches have
been suggested to add update semantics to http servers,
including conventions about how to store indexes as well-
known URLs for crawlers [9] and a combination of indexes
and http extensions [46]. WebDAV [15] provides some up-
date semantics through http extensions, but has yet to find
wide-spread adoption. The RSS syndication formats [36]
are widely implemented, but they are designed to expose
“new” content rather than a complete set of site resources.
Some search engines, notably Google and MSN [1, 3], have
begun to work with the Open Archives Initiative Protocol
for Metadata Harvesting (OAI-PMH), but they do not pro-
vide an open-source, broadly applicable solution. Google
Sitemaps, which derive from the earlier research cited above
[9], are a way to XML-encode the known URLs of a web
site with optional support for specifying updates and update
frequencies. MSN merely states it is committed to support-
ing industry standard protocols, of which OAI-PMH is one.
Sites with OAI-PMH servers can register with MSN’s “Aca-
demicLive” search service for enhanced content harvesting.

To address the deficiencies of these approaches, we present
mod oai, an Apache module that implements OAI-PMH func-
tionality and support for complex object metadata formats
directly into the Apache web server. The goal of mod oai

is to bring more efficient update semantics to the general
web crawling community. OAI-PMH [23, 42] is the de facto
standard for metadata interchange within the digital library
community, in part because of its rich semantics. Packages
for implementing OAI-PMH repositories for XML files have
been described [19, 37], but they are focused on highly con-
strained scenarios, not general web content and they do not
integrate directly into the web server.

2. OAI-PMH
OAI-PMH 2.0 is a low-barrier, HTTP-based protocol de-

signed to allow incremental harvesting of XML metadata.
An OAI-PMH repository (or data provider) is a network ac-
cessible server that can process the six OAI-PMH protocol
requests, and respond to them as specified by the protocol
document. A harvester (or service provider) is an applica-
tion that issues OAI-PMH protocol requests in order to har-

43

Figure 1: OAI-PMH Data Model.

vest XML formatted metadata. Scalability in OAI-PMH is
achieved through building hierarchical harvesting networks
with aggregators – services that are both a harvester and
a repository [24]. A quantitative analysis of OAI-PMH is
provided in [26].

The OAI-PMH is based on a simple data model primar-
ily consisting of resources, items and records, as shown in
Figure 1. Traditionally, the resource itself is not harvested.
Instead, queries return records containing metadata - i.e.,
information about the resource, such as Dublin Core meta-
data. The entry point to all available metadata pertain-
ing to a resource is the item, which is uniquely identified
by an OAI-PMH identifier. Each item may have one or
more metadata records, which have their own datestamps
and identification type, so queries can access any combi-
nation of an item’s metadata records by adding qualifiers.
Another important aspect of the OAI-PMH data model is
the set, enabling selective resource harvesting based not on
a resource’s location on the site, but on the resource’s mem-
bership in that set.

OAI-PMH supports six simple, mnemonic, but powerful
verbs or “protocol requests,” as shown in Table 1. Three
of the verbs are aimed at helping a harvester understand
the nature of an OAI-PMH Repository - Identify, List-
MetadataFormats, and ListSets. The ListSets verb can
let a harvester know that a site maintains sets, and what
those sets are. MIME type groupings (JPEG, PDF, etc.),
and “interest group” sets (“USHistory,” “animé”) are typ-
ical examples of sets that a site might support. The other
three protocol requests are used for the actual harvesting
of XML metadata: ListRecords is used to harvest records
from a repository. ListIdentifiers is an abbreviated form
of ListRecords, retrieving only identifiers, datestamps and
set information. GetRecord is used to retrieve an individ-
ual record from a repository. Required arguments specify
the identifier and the metadata format.

For example, a request is issued to an OAI-PMH repos-
itory at baseURL http://www.arxiv.org/oai2/, to obtain
metadata in Dublin Core format for all items in the set of
physics that have changed since December 27th 2004:

http://www.arxiv.org/oai2?verb=ListRecords

&metadataPrefix=oai dc&from=2004-12-27&set=physics

Since some OAI-PMH requests can result in a very long

response, the repository uses a resumptionToken to sepa-
rate the long responses into many shorter responses. A
ListRecords response containing 1M records could be sepa-
rated into 2000 incomplete lists of 500 records each. The fun-
damental, distinguishing characteristic that separates har-
vesting with OAI-PMH from regular web crawling is that
the repository chooses the size of the resumptionToken, not
the harvester. This allows repositories to dynamically throt-
tle the load placed on them by harvesters. The format of
the resumptionToken is not specified in the protocol and
is left to individual repositories to define. Load-balancing,
throttling and different strategies for resumptionToken im-
plementation are discussed in the OAI-PMH Implementa-
tion Guidelines [24].

Another powerful feature of the OAI-PMH is that it can
support any metadata format defined by means of an XML
Schema. The minimum requirement is support for Dublin
Core [47], but this metadata set is automatically derived
by mod oai from the http header information. This flexi-
bility has generated considerable interest in liberal interpre-
tations of the data model’s elements - resource, metadata,
records, and items. In some cases, this means using OAI-
PMH for other than typical bibliographic scenarios [44]. In
other cases, the interest is in transmitting the actual resource
and not just the metadata.

3. COMPLEX OBJECT FORMATS
AS METADATA

Web crawlers typically need access to more than just meta-
data. Even if the metadata included a full index of key
terms, search engines will want to access the resource it-
self, in part to offer a “cached” copy to customers. At
the same time, it is pointless for a crawler to request and
process unchanged or duplicate resources. We recently re-
viewed a number of ad hoc resource harvesting strategies
and described how they can lead to both missed updates
and unnecessary downloads [43]. In the same article we in-
troduced the concept of enabling accurate resource harvest-
ing using XML-based complex object formats [43] such as
the MPEG-21 Digital Item Declaration Language (MPEG-
21 DIDL)[30]. Using OAI-PMH and complex object for-
mats for resource harvesting in the repository synchroniza-
tion project between Los Alamos National Laboratory and
the American Physical Society is described in [5].

MPEG-21 DIDL is an XML-based instantiation of the
data model defined by the MPEG-21 Digital Item Decla-
ration (MPEG-21 DID) ISO Standard [45], which itself is
representation independent. MPEG-21 DID introduces a
set of abstract concepts that, together, form a well-defined
abstract model for declaring Digital Objects. A simplified
explanation of the MPEG-21 DID Abstract Model is given
here; interested readers are referred to [6] for more detailed
information. The MPEG-21 DID Abstract Model recognizes
several MPEG-21 DID entities (written in italic font style),
each of which has a corresponding XML element in the DIDL
XML Schema [21]:

• An item is the declarative representation of a Digital
Object. It is a grouping of items and/or components.

• A component is a grouping of resources. Multiple re-
sources in the same component are considered bit-

44

Verb Comment
Identify returns a description of the repository (name, POC, etc.)
ListSets returns a list of sets in use by the repository
ListMetadataFormats returns a list of metadata formats used by the repository
ListIdentifiers returns a list of ids (possibly matching some criteria)
GetRecord given an id, returns that record
ListRecords returns a list of records (possibly matching some criteria)

Table 1: OAI-PMH Verbs

equivalent and consequently it is left to an agent to
select which one to use.

• A resource is an individual datastream.

• A container is a grouping of containers and/or items.

• Secondary information pertaining to a container, an
item, or a component can be conveyed by means of a
descriptor/statement construct.

When mod oai exposes web resources via the OAI-PMH,
it maps that resource to an XML-based representation of
the resource that is compliant with MPEG-21 DIDL. Figure
2 presents a structural view of a web resource in MPEG-21
DIDL. The MPEG-21 DIDL XML elements have the same
name as the corresponding entity of the MPEG-21 DID data
model and, for clarity, are shown in courier:

The Web resource is considered a Digital Object, and
hence is mapped to a top-level DIDL Item element. Two
Descriptor/Statement constructs are attached to this Item
to convey secondary information pertaining to the Web re-
source.

The Web resource URI is provided in a Descriptor /

Statement construct, the content of which is compliant with
the MPEG-21 Digital Item Identification Standard [7] that
specifies how resources can be identified in the MPEG-21
framework. The http header information that would be pro-
vided if the resource was obtained through an http GET re-
quest is provided in a a separate Descriptor / Statement

construct, the content of which is compliant with an XML
Schema [25] specifically defined for the mod oai project.

The Web resource itself - that is the datastream - is pro-
vided in a construct that contains one or two Resources in
a Component that is a child element of the Item.

In all cases, the datastream is provided By-Reference by
including the URI of the Web resource as the content of
the Ref attribute of a Resource element. In cases where
the file size of the datastream does not exceed a preset and
configurable value, the datastream is also provided By-Value
as the content of a Resource element. In this case the data-
stream is base64 encoded. In both cases, the MIME type of
the Web resource is expressed by the mimeType attribute of
the Resource element. The top-level Item is embedded in
the DIDL root element to obtain an XML document that is
compliant with MPEG-21 DIDL.

4. MOD OAI
We have integrated OAI-PMH functionality into an Apache

module, mod oai, which responds to OAI-PMH requests on
behalf of a web server. Adding the module to a web server
results in a special purpose URI, called the “baseURL,”
which is defined from the site’s root URL:
http://www.foo.edu/ → http://www.foo.edu/modoai

Figure 2: Resource expressed in MPEG-21 DIDL.

Note that this does not represent a change to the underly-
ing file system. It is a virtual path which instructs Apache
to invoke the mod oai handler. The original root URL is
not affected; visitors and standard web crawlers continue to
access the site as usual.
mod oai is an instantiation of the general model of OAI-

PMH resource harvesting. When recently discussing the ad-
vantages of OAI-PMH harvesting over web crawling with
colleagues, they replied with “yes, OAI-PMH is nice, but
who is going to do all that cataloging?” The answer, of
course, is “no one” – OAI-PMH can be used outside of tra-
ditional catalogued resources. mod oai has the advantage
of automatically answering OAI-PMH requests for a web
server. The module exposes the files on an Apache web
server as MPEG-21 DIDL encoded resources through an
OAI-PMH repository with the following characteristics in
the OAI-PMH data model:

• OAI-PMH identifier: The URL of the resource serves
as the OAI-PMH identifier. This choice facilitates a
harvesting strategy whereby ListIdentifiers (with from
and until parameters) is used to determine the URLs of
web resources that have been updated since a previous
harvest.

• OAI-PMH datestamp: The modification time of the
resource is used as the OAI-PMH datestamp of all
available metadata formats. This is because all meta-
data formats are dynamically derived from the resource
itself. As a result, an update to a resource will result
in new datestamps for all metadata formats.

45

• OAI-PMH sets: A set organization is based on the
MIME type of resource. This choice facilitates MIME
type specific resource harvesting, through the use of
the set argument in protocol requests.

Three parallel metadata formats are supported. The most
important of which is oai didl. This metadata format is in-
troduced to allow harvesting of the resource itself. In this
metadata format, the web resource is represented by means
of an XML wrapper document that is compliant with the
MPEG-21 Digital Item Declaration Language (DIDL) [4],
which has been devised to facilitate the representation of
complex digital objects. This XML wrapper document in-
cludes the http header metadata format (described below),
as well as the web resource itself, provided using the By-
Reference or By-Value approach, or both. Figure 2 shows a
structural view of a web resource represented in the oai didl
(MPEG-21 DIDL) metadata format.

Dublin Core (oai dc) is supported as mandated by the
OAI-PMH, but only technical metadata that can be derived
from http header information (file size, MIME type, etc.)
is included. A new metadata format, http header, is intro-
duced. It contains all http response headers that would have
been returned if a web resource were obtained by means of
an http GET. This metadata format is included to ensure
that no information would be lost as a result of choosing
an OAI-PMH harvesting approach over a web crawling ap-
proach.

These design choices allow two main classes of mod oai

use: resource discovery and preservation, both of which of-
fer selective harvesting semantics using datestamp and/or
sets as selection criteria. The ListIdentifiers verb means an
OAI-PMH harvester can be used as a URL discovery tool to
identify web resources available from an Apache server, and
using the resulting list of URLs as seeds for a regular web
crawl. This fits the model of use for those with significant
web crawling infrastructures (e.g., Google).

The ListRecords verb allows an OAI-PMH harvester to
harvest the web resources represented by means of XML
wrapper documents compliant with MPEG-21 DIDL. To en-
sure that harvesters that choose this approach instead of reg-
ular crawling obtain all the information they require, http
header information represented using the http header meta-
data format is also included in this XML wrapper. This use
case corresponds to a preservation scenario where the har-
vester wishes to ensure that all resources are acquired from
a web site.

Using our example site, http://www.foo.edu/, we can
discover if the site’s server supports mod oai if we receive a
valid OAI-PMH response to this request:

http://www.foo.edu/modoai?verb=Identify

The server administrator could advertise the existence of
the baseURL more strongly by placing it in an “Allow:”
field of the robots.txt file. The administrator could make
mod oai the exclusive access method for robots by adding
the appropriate “Disallow:” fields in robots.txt.

To discover all PDFs from this site (ignoring all the nav-
igational HTML pages) and feed the resulting URLs to a
web crawler, a harvester could issue:

http://www.foo.edu/modoai?verb=ListIdentifiers

&metadataPrefix=oai dc&set=mime:application:pdf

Seed
index.html “find . -type f”

of files in baseline 709 5739
of files in update (25%) 114 1318

Table 2: Files accessed by wget.

A ListSets response will contain the MIME types a particu-
lar server actually holds, not all known MIME types. Sets in
OAI-PMH are recursive – requesting set “a” will get “a:b”,
“a:b:c”, “a:d”, etc. This can be exploited in mod oai – to
harvest all the 2004 videos encoded with MPEG-21 DIDL,
a harvester could issue:

http://www.foo.edu/modoai?verb=ListRecords

&metadataPrefix=oai didl&set=mime:video

&from=2004-01-01&until=2004-12-31

This request will return MPEG-21 encoded video-type files
(“video:mpeg”, “video:quicktime”, “video:x-msvideo”, etc.).
Videos can be quite large, and whether or not the videos
come back as By-Reference or By-Value is configurable by
the mod oai administrator.

5. QUANTITATIVE EVALUATION
To examine the performance of mod oai, we compared

OAI-PMH harvesting using the OCLC Harvester [48] with
the wget web crawling utility [2]. A copy of the Old Do-
minion University Computer Science Department web site
(http://www.cs.odu.edu/) served as the testbed. We ex-
cluded a number of files, including user files (∼user), web
mail files and data files from a survey utility. Overall, the
testbed included 5268 files that used 292MB disk space. The
server was at ODU and the client was at LANL.

We performed two experiments. The first used the depart-
mental homepage (“index.html”) as a seed, and the 709 files
crawled are those accessible via transitive closure from the
departmental homepage. In the second experiment we used
as a seed a web page with the list of all files found with “find
. -type f”. The significant difference between the numbers
of files detected in both experiments (first row of Table 2)
is because only a portion of valid URLs at a site are linked
from web pages hosted on that site. The other URLs could
be linked from pages on other sites or not linked at all. The
time-stamp comparison feature in wget is turned on using
the ‘-N’ option. This will cause wget to check if a local file
of the same name exists and only download the remote file
if it is “newer” than the local file. Table 2 shows the number
of files accessed by wget in both scenarios. Using the “find”
seed, wget downloads more URLs (5739) than there are files
(5268). This is because it finds additional URLs that the
seed points to, including directories and broken links. The
full wget command is:

wget -r --no-parent

--exclude-directories=/modoai,

-N $INDEX -o $INDEXLOG -P $INDEXMIRROR

--dns-timeout=1 --connect-timeout=1 --tries=1

Using the seed generated with “find”, we baselined both
wget and mod oai with all file modification dates set to
“2000-01-01” For our second test, we touched 25% of the files

46

(a) Baseline wget & mod oai (b) wget & mod oai after 25% file updates

Figure 3: Comparison of crawling performance

(1335 files) to make their modification dates “2002-01-01”.
This simulated the monthly update rate expected for “.edu”
sites [13]. For mod oai, we issued two different request types
(ListRecords, ListIdentifers), and two different “from” val-
ues (1900-01-01, 2001-01-01). We restarted Apache after
each round of harvesting. Figure 3(a) shows the time re-
quired for the baseline for all files and Figure 3(b) shows
the time required for just the updated files. It is surprising
that wget takes more time in accessing only the updated
files. The Apache log file shows that wget uses both the
http HEAD and GET methods to check the time. Thus, in
checking for updates, wget will use more http requests (5739
HEAD + 1318 GET).

We also tested the performance of mod oai with resump-
tionToken sizes of 5, 10, 20, 50 and 100 (Figure 4). With
ListRecords, the performance increase leveled off at a re-
sumptionToken size of 50. With ListIdentifiers, performance
continued to increase with increasing the resumptionToken
size. This is due to the fact that ListRecords returns the
base64-encoded file, and ListIdentifiers returns just the re-
source identifiers. These results imply that we should have
different resumptionToken sizes for ListRecords and ListI-
dentifiers.

In fact, this has suggested an altogether new approach
to resumptionToken size configuration. In bibliographic ori-
ented OAI-PMH instantiations there is an implicit assump-
tion that all records are roughly the same size. However,
when complex object formats are used to base64 encode the
resource, the size of each record will be highly variable. The
resumptionToken should therefore be a function of the size
of the response (e.g., 1MB) instead of the number of records
(e.g., 100).

6. DISCUSSION & FUTURE WORK
During the development of mod oai, we encountered a

number of subtle but important issues that illustrate the
fundamental differences between web crawling and OAI-PMH
harvesting. We are actively exploring the best way to resolve

Figure 4: Impact of resumptionToken size.

these mismatches. One issue is the “counting problem:”
what constitutes a complete list of the site’s crawlable re-
sources? Another mismatch is the “representation problem”
- the resource as sent to a browser is not necessarily an op-
timal representation for the crawler. mod oai can help solve
both problems.

6.1 The Representation Problem
mod oai does not generate descriptive metadata. The val-

ues it populates in Dublin Core are strictly technical meta-
data derived from the file (bytes, MIME type, last modi-
fied date and URL). This is a conscious decision: we are
not positioning mod oai as a replacement for existing repos-
itory systems (e.g., Fedora[34], DSpace[39]) with extensive
descriptive metadata. Rather, we aim to improve the effi-
ciency of web crawlers which typically do not have access
to extensive descriptive metadata. Some crawlers actively
ignore the potentially dishonest metadata they receive (cf.
[29]).

47

We are developing a plug-in architecture for mod oai that
will specify rules for extracting descriptive metadata from
various MIME types and/or URL patterns. One benefit of
the plug-in approach is the ability to integrate third-party
metadata extraction tools without requiring a rewrite of the
mod oai module. Even though the web crawling community
has become adept at extracting metadata directly from web
resources, this plug-in architecture would enable a site to
create complex objects as preservation packages for long-
term archiving.

We are working on including technical and structural meta-
data at dissemination time as well. Capitalizing on our
work of capturing “forensic metadata” in MPEG-21 DIDL
[31], mod oai administrators can automatically include the
output of provenance and fixity utilities in ListRecords re-
sponses. (For a discussion of OAIS preservation terminology
including “provenance” and “fixity”, see [10]). Lastly, web
servers will frequently transform files before serving them
to the client (e.g, .cgi, .php, .shtml, .jsp, .shtml) and it is
a potential security-hole to export the unprocessed file. For
example, a .php file might have database passwords in the
source file. What is the “correct” representation: the .php
source, or the processed HTML sent to the client? Although
this is primarily a representation problem, dynamic files pro-
ducing infinite output also impact the counting problem.
Currently, mod oai will ignore any file that requires server-
side processing by checking to see if there is a handler regis-
tered for the particular file type. We are currently working
on techniques to securely support both modes of exporting
dynamic files.

6.2 The Counting Problem
The first problem we encountered was simply determining

how many files were on a web server. Traditional OAI-PMH
applications are deterministic with respect to the number of
records that the repository holds. Most OAI-PMH reposi-
tory implementations are accessing a database in which all
possible records are knowable. However, web harvesting is
different. We define U as the set of all possible URLs for a
particular web server, and F as the set of files that the web
server can see. Apache maps U → F, and mod oai maps F
→ U. Neither function is 1-1 nor onto. We can easily check
if a single URL maps to F, but given F we cannot (easily)
generate U. One problem is that Apache can “cover up” le-
gitimate files. Consider two files, A and B, on a web server.
Now consider an httpd.conf file with these directives:

Alias /A /usr/local/web/htdocs/B

Alias /B /usr/local/web/htdocs/A

The URLs obtained by web crawling and the URLs obtained
by OAI-PMH harvesting will be in contradiction. That is,
a user or crawler requesting http://www.foo.edu/B will ac-
tually receive the resource from htdocs/A, and vice-versa.
mod oai, on the other hand, is unaware of the alias and re-
turns metadata from htdocs/B as if the directive did not
exist.

Files can also be covered up by Apache’s Location direc-
tive which is used with (among other things) Apache mod-
ules. For example, a file named “server-status” would be
exported by mod oai, but would not be accessible directly
from the web server if the “mod status” module is installed.
Automounting of Network File System (NFS) directories is

another example of a complication to the counting prob-
lem. NFS mounted directories shared between many de-
partmental machines is a common deployment scenario and
makes it extremely difficult to include UserDir files (e.g.,
http://www.cs.odu.edu/∼mln/) in mod oai responses since
there is no (easy) way to know in advance all possible users.
However, these files constitute the majority of files acces-
sible from a web server in a shared-user environment such
as a university department. mod oai currently ignores files
impacted by Alias, Location and UserDir, although future
versions will resolve these conflicts.

6.2.1 Security
Users and administrators have developed bad habits based

on “security through obscurity” – if there is no URL to
a resource, a search engine cannot find it. Unfortunately,
mod oai is just one of many services (or people, in shared
filesystem environments) that can unwittingly reveal previ-
ously unknown URLs to search engines. This is similar to
the problem of search engines revealing files and metadata
that users did not realize were available (e.g., [38, 16, 22]). It
is important to stress that mod oai will not export any files
that are not accessible through normal http access (see the
discussion in section 6.2.2); mod oai provides configuration
facilities for regular expressions to skip, as well as entire di-
rectories or URL patterns to avoid. Reasonable defaults are
supplied in the mod oai configuration, but it cannot enforce
good habits by users and administrators.
mod oai currently handles files protected by Apache by

checking each file before it is included in a response to see if
the necessary credentials in the current http connection are
sufficient to meet the requirements specified in the .htaccess
file. As a result, harvesters with different credentials will
see a different number of records for the same server. Since
harvesting is not interactive, passwords have to be included
in the http environment when the harvest is begun.

6.2.2 Hidden Files
mod oai will not advertise any file that the request does

not have the credentials to retrieve. This prevents OAI-
PMH errors from being generated when a harvester tries
to access a protected file, but it also means that harvesters
with different credentials will see a different “view” of the
same mod oai baseURL. Somewhat related is the problem
that Apache will advertise files that it cannot read. For
example, a file can be seen in a directory listing, but if the
permissions on the file are “000” then no one can actually
read the file. The file is listed by Apache since its existence
is actually a property of the parent directory, not the file
itself. To preserve OAI-PMH semantics, mod oai will not
include such files in responses.

Apache also uses the IndexIgnore directive to specify pat-
terns for filenames that should not be included in a directory
listing (e.g., “foo∼” “foo#” and other file version conven-
tions). However, if requested directly, Apache will serve
it: http://www.foo.edu/index2.html∼, for example. The
Apache semantics in this scenario are similar to “hidden”
files in the Unix filesystem. This has serious implications
for OAI-PMH – it would be equivalent to the undesirable
scenario where more files are available via GetRecord than
ListRecords. To preserve OAI-PMH semantics, mod oai ig-
nores any files of the type specified in IndexIgnore.

48

6.2.3 Google Sitemaps
Google’s Sitemap protocol [1] is a static XML file that lists

the URL and a number of optional descriptors of the URL,
such as the estimated change rate (chosen from a controlled
vocabulary of values such as “always”, “weekly”, “yearly”,
etc.), date of last modification and a local crawling priority
(not necessarily Google’s priority).

For comparison, we ran sitemap gen.py in mode 3 which
is similar to mod oai’s method for generating valid URLs.
The Sitemap script generated a list of 5843 URLs – note
that this does not match any of the numbers in Table 2.
Compared to our methods the Sitemap script was overly
optimistic, returning some URLs that did not exist (we are
not sure why), and several URLs that were protected with
a .htaccess file (http status code 403).

Google’s Sitemap is designed to be an extremely light-
weight mechanism for informing Google’s web crawlers of
new and updated URLs at a web site, similar to using mod oai

with only “ListIdentifiers” and no datestamps, sets or meta-
data formats. There is a trade-off between the dynamic ac-
cess of mod oai and the static access of Sitemap. A mod oai

response will always be up to date, but at the cost of com-
putation. Similarly, Sitemap will be only as up to date as
the local refresh policy, but each crawler access to Sitemap
will not impose a computational cost on the server.

7. CONCLUSIONS
mod oai is a demonstration of combining complex object

metadata formats with OAI-PMH for efficient web resource
harvesting. It is an Apache 2.0 module that exposes a gen-
eral web server as an OAI-PMH repository. Our initial tests
have shown that simply generating a list of valid URLs for
a web site is not easily done. We have also presented initial
performance results of mod oai and wget on a typical uni-
versity department web site. We have shown that mod oai

offers comparable performance to wget for baseline harvests
and outperforms wget when file updates are considered. We
have described how the OAI-PMH semantics are interpreted
in the context of an Apache server, including some of the
mismatches that occur between the filesystem, Apache web
server and the mod oai module that complicate the semantic
mapping at each level.
mod oai can be used in two scenarios: resource discovery,

in which a harvester can generate a list of URLs to be fed
to regular web crawlers (using ListIdentifiers), and preser-
vation, in which mod oai will export MPEG-21 DIDL en-
coded versions of the content (using ListRecords). mod oai

is not intended to replace existing OAI-PMH implementa-
tions. Rather, it is intended make web crawling more effi-
cient by embedding support for OAI-PMH semantics of in-
cremental harvesting based on datestamps and sets directly
in an Apache web server using Apache’s module infrastruc-
ture. An added advantage to this approach is that Apache
modules are well understood by the webmaster community.

To date, much of the research in the web community has
focused on efficiently estimating updates and additions of
remote, uncooperative web servers. Now, there is interest in
shifting some of the responsibility for resource discovery to
the web servers themselves. mod oai can help this effort by
utilizing the local knowledge of web servers for more efficient
web crawling.

8. ACKNOWLEDGMENTS
mod oai is supported by the Andrew Mellon Foundation.

Aravind Elango and Terry L. Harrison contributed to the
mod oai source code. Jeroen Bekaert contributed to the
MPEG-21 DIDL profile of mod oai. The mod oai web site
is www.modoai.org.

9. REFERENCES
[1] Creating google sitemaps files.

http://www.google.com/support/webmasters/bin/
topic.py?topic=8467.

[2] GNU wget GNU Project Free Software Foundation
(FSF). http://www.gnu.org/software/wget/wget.html.

[3] Windows live search academic.
http://academic.live.com/Publishers Faq.htm.

[4] J. Bekaert, P. Hochstenbach, and H. Van de Sompel.
Using MPEG-21 DIDL to represent complex digital
objects in the Los Alamos National Laboratory digital
library. D-Lib Magazine, 9(11), 2003.

[5] J. Bekaert and H. Van de Sompel. A standards-based
solution for the accurate transfer of digital assets.
D-Lib Magazine, 11(6), 2005.

[6] J. Bekaert, E. De Kooning, and H. Van de Sompel.
Representing digital assets using MPEG-21 Digital
Item Declaration. International Journal on Digital
Libraries, 6(2), 2006.

[7] J. Bekaert and N. Rump. MPEG-21 DII (Output
Document of the 71st MPEG Meeting, Hong Kong,
China, ISO/IEC JTC1/SC29/WG11/N6928).
Technical report, 2005.

[8] M. K. Bergman. The deep web: Surfacing hidden
value. Journal of Electronic Publishing, 7(1), 2001.

[9] O. Brandman, J. Cho, H. Garcia-Molina, and
N. Shivakumar. Crawler-friendly web servers.
SIGMETRICS Performance Evaluation Review,
28(2):9–14, 2000.

[10] Consultative Committee for Space Data Systems.
Reference Model for an Open Archival Information
System (OAIS). Tech Report CCSDS 650.0-B-1, 2002.

[11] J. Caverlee, L. Liu, and D. Buttler. Probe, cluster,
and discover: Focused extraction of qa-pagelets from
the deep web. In ICDE, pages 103–115, 2004.

[12] J. Cho and H. Garcia-Molina. Effective page refresh
policies for web crawlers. ACM Transactions on
Database Systems, 28(4):390–426, 2003.

[13] J. Cho and H. Garcia-Molina. Estimating frequency of
change. ACM Transactions on Internet Technology,
3(3):256–290, 2003.

[14] J. Cho, H. Garcia-Molina, and L. Page. Efficient
crawling through url ordering. Computer Networks
and ISDN Systems, 30(1-7):161–172, 1998.

[15] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and
D. Jensen. HTTP extensions for distributed authoring
– WEBDAV. Tech Report Internet RFC-2518, 1999.

[16] S. Granneman. The perils of googling.
http://www.theregister.co.uk/2004/03/10
/the perils of googling/, 2004.

[17] A. Gulli and A. Signorini. The indexable web is more
than 11.5 billion pages. WWW 2005, 5, May 2005.

49

[18] J. Hirai, S. Raghavan, H. Garcia-Molina, and
A. Paepcke. WebBase: a repository of Web pages.
Computer Networks (Amsterdam, Netherlands: 1999),
33(1–6):277–293, 2000.

[19] P. Hochstenbach, H. Jerez, and H. Van de Sompel.
The OAI-PMH static repository and static repository
gateway. In Proceedings of JCDL ’03, pages 210–217,
2003.

[20] P. G. Ipeirotis, L. Gravano, and M. Sahami. Probe,
count, and classify: Categorizing hidden web
databases. In SIGMOD Conference, pages 100–109,
2001.

[21] ISO/IEC. ISO/IEC 21000-2:2005 information
technology - multimedia framework (MPEG-21) - part
2: Digital item declaration - schema for derived DIDL
types. http://purl.lanl.gov/STB-RL/schemas
/2004-11/DIDL.xsd.

[22] A. Klein. The insecure indexing vulnerability.
http://www.webappsec.org/projects
/articles/022805.shtml, 2005.

[23] C. Lagoze and H. Van de Sompel. The Open Archives
Initiative: building a low-barrier interoperability
framework. In Proceedings of JCDL ’01, pages 54–62,
2001.

[24] C. Lagoze, H. Van de Sompel, M. L. Nelson, and
S. Warner. Implementation guidelines for the Open
Archives Initiative Protocol for Metadata Harvesting.
http://www.openarchives.org/OAI/2.0/guidelines.htm,
2005.

[25] X. Liu. XML schema defining a subset of HTTP
headers used by mod oai project.
http://purl.lanl.gov/STB-RL/schemas/2004-08
/HTTP-HEADER.xsd.

[26] X. Liu, K. Maly, M. Zubair, and M. L. Nelson.
Repository synchronization in the OAI framework. In
Proceedings of JCDL ’03, pages 191–198, 2003.

[27] Z. Liu, C. Luo, J. Cho, and W. W. Chu. A
probabilistic approach to metasearching with adaptive
probing. In ICDE, pages 547–559, 2004.

[28] P. Lyman. Archiving the world wide web. In Building
a National Strategy for Preservation: Issues in Digital
Media Archiving. Council on Library and Information
Resources, 2002.

[29] C. A. Lynch. When documents deceive: trust and
provenance as new factors for information retrieval in
a tangled web. Journal of the American Society for
Information Science and Technology, 52(1):12–17,
2001.

[30] J. P. McDonough. METS: Standardized encoding for
digital library objects. International Journal on
Digital Libraries, 6(2):148–158, 2006.

[31] M. L. Nelson, J. Bollen, G. Manepalli, and R. Haq.
Archive ingest and handling test: The Old Dominion
University Approach. D-Lib Magazine, 11(12), 2005.

[32] A. Ntoulas, J. Cho, and C. Olston. What’s new on the
web?: the evolution of the web from a search engine
perspective. In Proceedings of WWW ’04, pages 1–12,
2004.

[33] A. Ntoulas, P. Zerfos, and J. Cho. Downloading
textual hidden web content through keyword queries.
In Proceedings of JCDL ’05, pages 100–109, 2005.

[34] S. Payette and C. Lagoze. Flexible and extensible
digital object and repository architecture (FEDORA).
In ECDL ’98: Proceedings of the Second European
Conference on Research and Advanced Technology for
Digital Libraries, pages 41–59.

[35] S. Raghavan and H. Garcia-Molina. Crawling the
hidden web. In Proceedings of the Twenty-seventh
International Conference on Very Large Databases,
pages 129–138, 2001.

[36] J. Reagle. Web RSS (syndication) history.
http://goatee.net/2003/rss-history.html, 2003.

[37] H. Suleman. OAI-PMH2 XMLFile file-based data
provider. http://www.dlib.vt.edu/projects/OAI/
software/xmlfile/xmlfile.html, 2002.

[38] D. Sullivan. A closer look at privacy & desktop search.
http://searchenginewatch.com/sereport/article.php
/3421621, 2004.

[39] R. Tansley, M. Bass, D. Stuve, M. Branschofsky,
D. Chudnov, G. McClellan, and M. Smith. The
DSpace institutional digital repository system: current
functionality. In Proceedings of JCDL ’03, pages
87–97, 2003.

[40] H. Van de Sompel, T. Krichel, M. L. Nelson,
P. Hochstenbach, V. M. Lyapunov, K. Maly,
M. Zubair, M. Kholief, X. Liu, and H. O’Connell. The
UPS prototype: An experimental end-user service
across e-print archives. D-Lib Magazine, 6(2), 2000.

[41] H. Van de Sompel and C. Lagoze. The Santa Fe
Convention of the Open Archives Initiative. D-Lib
Magazine, 6(2), 2000.

[42] H. Van de Sompel and C. Lagoze. Notes from the
interoperability front: A progress report on the Open
Archives Initiative. In Proceedings of ECDL ’02, pages
144–157, 2002.

[43] H. Van de Sompel, M. L. Nelson, C. Lagoze, and
S. Warner. Resource harvesting within the OAI-PMH
framework. D-Lib Magazine, 10(12), 2004.

[44] H. Van de Sompel, J. A. Young, and T. B. Hickey.
Using the OAI-PMH ... differently. D-Lib Magazine,
9(7/8), 2003.

[45] R. Van de Walle, I. Burnett, and G. Dury. ISO/IEC
21000-2 Digital Item Declaration (Output Document
of the 70th MPEG Meeting, Palma De Mallorca,
Spain, No. ISO/IEC JTC1/SC29/WG11/N6770),
2004.

[46] A. van Hoff, J. Giannandrea, M. Hapner, S. Carter,
and M. Medin. The HTTP distribution and
replication protocol. W3C Technical Report
http://www.w3.org/TR/NOTE-drp, 1997.

[47] S. Weibel. Metadata: The foundations of resource
description. D-Lib Magazine, 1(1), 1995.

[48] J. Young. OAIHarvester2.
http://www.oclc.org/research/software/oai
/harvester2.htm, 2005.

50

